Adaptive Sampling Strategies for Stochastic Optimization
نویسندگان
چکیده
منابع مشابه
Sampling Strategies and Local Search for Stochastic Combinatorial Optimization
In recent years, much attention has been devoted to the development of metaheuristics and local search algorithms for tackling stochastic combinatorial optimization problems. In this paper, we propose an effective local search algorithm that makes use of empirical estimation techniques for a class of stochastic combinatorial optimization problems. We illustrate our approach and assess its perfo...
متن کاملSampling Bounds for Stochastic Optimization
A large class of stochastic optimization problems can be modeled as minimizing an objective function f that depends on a choice of a vector x ∈ X, as well as on a random external parameter ω ∈ Ω given by a probability distribution π. The value of the objective function is a random variable and often the goal is to find an x ∈ X to minimize the expected cost Eω[fω(x)]. Each ω is referred to as a...
متن کاملOptimal sampling strategies for multiscale stochastic processes
In this paper, we determine which non-random sampling of fixed size gives the best linear predictor of the sum of a finite spatial population. We employ different multiscale superpopulation models and use the minimum mean-squared error as our optimality criterion. In multiscale superpopulation tree models, the leaves represent the units of the population, interior nodes represent partial sums o...
متن کاملStochastic Optimization with Importance Sampling
Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a ra...
متن کاملStochastic Optimization with Bandit Sampling
Many stochastic optimization algorithms work by estimating the gradient of the cost function on the fly by sampling datapoints uniformly at random from a training set. However, the estimator might have a large variance, which inadvertantly slows down the convergence rate of the algorithms. One way to reduce this variance is to sample the datapoints from a carefully selected non-uniform distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2018
ISSN: 1052-6234,1095-7189
DOI: 10.1137/17m1154679